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Is Big data processing          
time consuming?
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INTRODUCTION
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BACKGROUND METHOD SOLUTION
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OVERVIEW

• Goal: To quantify weight changes 
and their association with sleep 
using Sleep Number Smart beds 
equipped with force sensors.

• Problem: Raw readings were noisy 
due to user movements 
necessitating denoising by cleaning 
each rolling window of the big data.

• Methodology: Entropy measure 
calculated using Pandas and Pyspark 
implementations were utilized to clean 
and denoise the dataset. 

• Experimentation: Different configurations 
of single and multi-node clusters in 
Databricks were tested on datasets with 
10 to 50 million datapoints for optimal 
performance evaluation.

• Result: The recommended 
Pyspark method rapidly 
processed 50 million records in 
nearly 0.3 seconds in Databricks. 

• Inference: It performed complex 
custom calculation on rolling 
windows of time series big data in 
constant time complexity 
irrespective of data size. 

A brief preview

7
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Background

SMARTBED

SENSORS

NOISY 
SIGNAL

High entropy

Low entropy

Model

High 
quality 
data

Entropy => Quantifies randomness, disorder or uncertainty 
Time complexity of the entropy-calculation algorithm in literature is O(N^2) (Liu et al., 2022)

Sum of 
readings

Suppose subject sleeps on left side
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• The goal was to quantify weight changes & their association 
with sleep. However, the sensors under the Smart bed send 
overnight force signals which are inherently noisy due to user 
movements & position in bed. 

• Due to fluctuations in readings on each side of bed, an intricate 
quality assessment needed to be performed to select stable 
data segments characterized by low entropy. 

• For calculating the entropy at a granular level, a custom formula 
had to be applied to slices of high-resolution time series big 
data at 1 Hz with 10s of millions of records. 

• The initial implementation using Pandas did not suffice due to 
memory and time constraints.

GENERAL PROBLEM TECHNICAL PROBLEM

9

CHALLENGES
Problem Overview

9
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TERMINOLOGY
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• Pandas is a powerful and flexible python library 
commonly used for data analysis, manipulation and 
machine learning tasks.

• It is open source and built on top of the Python 
programming language.

• PySpark is the Python API gateway to Apache Spark 
for data processing, analysis and machine learning 
tasks.

• It enables real-time large-scale data processing in a 
distributed environment using the Python 
programming language.

Pandas Pyspark

Overview & General use

10
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DATASET 



50, 40, 30, 20 and 10
million datasets 
generated from a 
combination of 
synthetic and actual 
datapoints from     
12.55 million data rows 
originating from       
118 overnight sessions 
with 8 Testers. 

8 
testers

118 
sessions

12.55 m 
data

50m
40m

30m

20m

10m

DATASET

To test scalability & 
consistency



DATA CURATION

Initial dataset •Actual 
sensor data

Dummy data  
with Pseudo 

id

•Subject id is transformed by replacing 
study id with SDn (for example, - SD1, 
SD2, SD3 etc). Here SD stands for 
synthetic data. 

Transformed 
data with new 

readings

•A constant value 
(multiple of 25 for each 
dataset) is added to all 
readings

3 synthetic datasets

SD3

SD2
SD1

Larger 
study 

(10.88 m)

Smaller 
study 

(1.6 m)

Initial 
data 

(12.5 m)

5 testers 
102 sessions

3 testers 
16 sessions

8 testers 
118 sessions

3 iterations 
(with unique 

pseudo ids and 
unique 

constants)

(1) INITIAL DATA (2) SYNTHETIC DATA

(3) FINAL DATA

Final 
data

Initial 
data

Syn. 
data 1

Syn. 
data 2

Syn. 
data 3

Merge all 
datasets to 
multiply the 
initial data 
by 4 times

50.2 m
550 sessions
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CLUSTERS 
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METHODS 
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• Accessed 10 to 50 million 
distinct datasets at 10 million 
increments from delta lake.

• Applied user-defined function 
(udf) to calculate entropy to 
30-sec rolling windows with 1 
second shift of the signal for 
each sleeper & session.

• For algo design, examined the 
efficient & brute force 
implementations of Pandas & 
Pyspark libraries.

• Evaluated both single & multi-
node clusters of varying 
configurations based on total 
time taken.

• Unable to evaluated the 
Pandas implementation 
beyond 40 m as it keeps 
failing at failed at 50m.

• The Pandas did not suffice 
due to memory & time 
constraints until the operation 
was augmented using 
Pyspark.

DATA & LOGIC ALGORITHM LIMITATIONS

1818
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Total number of 
experiments

144 experiments

PANDAS PYSPARK

Dataset 4 5
Methods 2 2
Cluster 
configs 8 8

64 + 80
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RESULTS 
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RESULTS
Pandas vs. Pyspark

21

• Pyspark efficient 
method has constant 
time complexity O(1) 
due to constant total 
time & function calls 
irrespective of data 
size.

• The Pyspark operation 
generates custom 
windows based on the 
criterion defined and 
applies the Pandas 
function to data in each 
individual window.

• It performed complex 
rolling calculation on 50 
million records in less 
than 0.3 seconds with 
both single & multi-
node Databricks 
clusters.

Pandas

Pyspark

Processing time Function calls



Pandas Total time: 
Single node & Multi-node clusters



Pyspark Total time: 
Single node & Multi-node clusters



Pandas Function call Count: 
Single node & Multi-node clusters



Pyspark Function call Count : 
Single node & Multi-node clusters
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CONSISTENCY & SCALABILITY
Single-node evaluation of the Efficient Pandas implementation

Pandas  
Single-node
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CONSISTENCY & SCALABILITY
Multi-node evaluation of the Efficient Pandas implementation

Pandas  
Multi-node
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CONSISTENCY & SCALABILITY
Single-node evaluation of Efficient Pyspark implementation

Pyspark  
Single-node
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CONSISTENCY & SCALABILITY
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Multi-node evaluation of Efficient Pyspark implementation

29

Pyspark  
Multi-node
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10 million

Solution evaluation

50 million

Using Single-node clusters

Pyspark

Pandas

50 million

10 million
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10 million

Solution evaluation

50 million

Using Multi-node clusters

Pyspark

Pandas

50 million

10 million
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DEMO

Click on Play > button
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Clear winner = 
PYSPARK  EFFICIENT 

METHOD



Within
0.2 - 0.3 seconds

Total time taken for 10 to 50 million records

34
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CONCLUSION 
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TECHNICAL DETAILS

Technical insights

• As Pandas failed to process beyond 40 m datapoints, the results at the same size & varying cluster configuration 
were juxtaposed to compare the processing speed, execution time & function calls to nominate the best method. 

• The efficient Pyspark method had a constant time complexity O(1) & static number of function calls. It executed 
in mere 0.2 to 0.3 seconds. 

• In comparison to the Pandas brute force method with O(n) complexity and approximately 45-minute execution 
time, the top method was four orders of magnitude times faster. 

• Similarly, when compared to the efficient Pandas method with O(log(n)) complexity and approximately 15-minute 
execution time, the top method was 3 orders of magnitude times faster. 

• Finally, the top method was twice to thrice as fast as the Pyspark brute-force method with quasi-O(1) complexity 
and 0.3 to 0.6 second execution time with single and multi-node clusters, respectively.

DISCUSSION

3636
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PANDAS

• Ideal for small datasets below 0.5 
million datapoints.

• Works well on a single machine.

• Easier to implement with lower       
learning curve due to simple API             
& syntax.

PYSPARK

• Ideal for larger datasets above 0.5 
million datapoints.

• Works well with distributed 
processing across clusters.

• Utilizes python’s learnability to 
leverage the powerful capabilities     
of Apache Spark.

RECOMMENDATIONS

37

Based on Pandas vs. Pyspark comparison

37

Disclaimer
Shared analysis applies to entropy calculation. Other 

algorithms may require different considerations.

Key takeaway
Gain in performance can be observed for big data 

algorithms that can be parallelized.

Use the Databricks platform to 
leverage the computing 

capabilities offered by multitude 
of cluster configurations
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• The recommended efficient Pyspark 
method to calculate entropy ensures 
constant O(1) time complexity. 

• The solution is efficient (fast), scalable 
and consistent as promised.

• The potent synergy of Pyspark 
Databricks can enable accelerated 
processing of big data.

• It can perform complex time series 
rolling window operations using the 
entropy custom function in less than a 
second in Databricks.

38

CONCLUSION 
Based on 144+ experiments

38

• Pandas is easy to use & ideal for smaller 
datasets below 0.5 million 

• PySpark is ideal for larger datasets with 
distributed processing across clusters
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Team 
roles

Name Role Responsibilities

Gary Garcia Molina Long-term Research 
team leader

Vision, guidance & Ideas

Megha Rajam Rao Weight research lead Algorithm design, in-lab & in-home 
study design and coordination, 
data collection, protocols, quality 
assessment & analysis

Dmytro Rizdvanetskyi Data Architect Peer review & Algorithm design 
assessment

Sai Ashrith Aduwala Research contributor In-lab data collection, study 
coordination & data pipeline

Suprit Bansod Research contributor Manual annotation for data quality 
& in-lab data analysis

Shawn Barr Research contributor In-lab data analysis & in-home 
mini-protocol analysis

Kashish Jain Electrical engineer Hardware setup & troubleshooting

Dmytro Guzenko Reviewer Algorithm Peer review
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• Liu, W., Jiang, Y., & Xu, Y. (2022, April 8). A super fast algorithm for estimating sample 
entropy. Entropy (Basel, Switzerland). 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027109/

• pandas - Python Data Analysis Library. (n.d.). https://pandas.pydata.org/

• PySpark Overview — PySpark master documentation. (n.d.). 
https://spark.apache.org/docs/latest/api/python/index.html
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Senior Principal Scientist
Sleep Number
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Sleep Number
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Appendix



Best results (20 out of 72 Single node tests)
Pyspark-Efficient had superior performance compared to Pandas

Clus
ter_
No Cluster_type Node Runtime Node_type

Active 
memory_gb

Active 
cores Method

Dataset_in
_Millions

Function_
calls

Primitive_ca
lls

CPU_time
_secs

Overall_
time_sec

s

Overall_
time_min

s

Photon_a
ccelerat

ion
1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 20 15996 15951 0.116 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 30 15996 15951 0.116 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 50 15996 15951 0.117 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 40 15996 15951 0.122 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 20 15995 15950 0.135 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 50 15995 15950 0.135 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 30 15995 15950 0.136 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 40 15995 15950 0.143 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 50 15995 15950 0.144 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 20 15995 15950 0.145 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 30 15995 15950 0.147 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 10 16864 16819 0.154 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 40 15995 15950 0.159 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 10 16863 16818 0.168 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 30 15995 15950 0.17 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 50 15995 15950 0.171 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 40 15995 15950 0.179 0.3 0.005 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 20 15995 15950 0.18 0.3 0.005 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 10 16863 16818 0.191 0.3 0.005 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 10 16863 16818 0.254 0.3 0.005 No



Best results (20 out of 72 Multi-node tests)
Pyspark-Efficient had superior performance compared to Pandas

Cluster_
No Cluster_type Node Runtime

Active 
memory_gb

Active 
cores Method

Dataset_in_Mi
llions

Function_c
alls

Primitive_
calls CPU_time_secs

Overall_time_
secs

Overall_ti
me_mins

Photon_acc
eleration

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 50 15995 15950 0.132 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 20 15995 15950 0.133 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 50 15995 15950 0.137 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 20 15995 15950 0.141 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 40 15995 15950 0.143 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 50 15995 15950 0.143 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 30 15995 15950 0.146 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 30 15995 15950 0.147 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 40 15995 15950 0.148 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 20 15995 15950 0.149 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 30 15995 15950 0.155 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 40 15995 15950 0.169 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 10 16863 16818 0.177 0.3 0.005 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 10 16863 16818 0.18 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 30 15995 15950 0.183 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 50 15995 15950 0.183 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 20 15995 15950 0.184 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 40 15995 15950 0.187 0.3 0.005 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 10 16863 16818 0.197 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 10 16863 16818 0.223 0.3 0.005 No



Pandas computing (CPU) time: 
Single node & Multi-node clusters



Pyspark computing (CPU) time: 
Single node & Multi-node clusters
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