

# RAPID PYSPARK IMPLEMENTATION ON TIME SERIES BIG DATA





©2024 Databricks Inc. — All rights reserved





# Rapid Pyspark custom processing on time series Big data in Databricks

Powered by

Data Science and Machine Learning (Advanced) Breakout Session Powered by





DATA<sup>+</sup>AI SUMMIT

©2024 Databricks Inc. — All rights reserved

# Is Big data processing time consuming?



# DATAAI SUMMIT



# Efficient (Fast)

## Solution

## Consistent

# Agenda



- Introduction
- Dataset
- Clusters
- Methods
- Results
- Conclusion

# INTRODUCTION





## OVERVIEW

A brief preview



#### BACKGROUND

- Goal: To quantify weight changes and their association with sleep using Sleep Number Smart beds equipped with force sensors.
- **Problem:** Raw readings were noisy due to user movements necessitating denoising by cleaning each rolling window of the big data.



#### METHOD

- Methodology: Entropy measure calculated using Pandas and Pyspark implementations were utilized to clean and denoise the dataset.
- Experimentation: Different configurations of single and multi-node clusters in Databricks were tested on datasets with 10 to 50 million datapoints for optimal performance evaluation.



#### SOLUTION

- **Result:** The recommended Pyspark method rapidly processed 50 million records in nearly 0.3 seconds in Databricks.
- Inference: It performed complex custom calculation on rolling windows of time series big data in constant time complexity irrespective of data size.



**Entropy** => Quantifies randomness, disorder or uncertainty Time complexity of the entropy-calculation algorithm in literature is O(N^2) (Liu et al., 2022)

## CHALLENGES

#### **Problem Overview**



#### **GENERAL PROBLEM**

- The goal was to quantify weight changes & their association with sleep. However, the sensors under the Smart bed send overnight force signals which are inherently noisy due to user movements & position in bed.
- Due to fluctuations in readings on each side of bed, an intricate quality assessment needed to be performed to select stable data segments characterized by low entropy.

#### **TECHNICAL PROBLEM**

- For calculating the entropy at a granular level, a custom formula had to be applied to slices of high-resolution time series big data at 1 Hz with 10s of millions of records.
- The initial implementation using Pandas did not suffice due to memory and time constraints.

## TERMINOLOGY

#### **Overview & General use**



#### Pandas

- Pandas is a powerful and flexible python library commonly used for data analysis, manipulation and machine learning tasks.
- It is open source and built on top of the Python programming language.



#### Pyspark

- PySpark is the Python API gateway to Apache Spark for data processing, analysis and machine learning tasks.
- It enables real-time large-scale data processing in a distributed environment using the Python programming language.

# DATASET



# DATASET



50, 40, 30, 20 and 10 million datasets generated from a combination of synthetic and actual datapoints from 12.55 million data rows originating from 118 overnight sessions with 8 Testers.

#### DATA CURATION



# **CLUSTERS**





# METHODS









#### DATA & LOGIC

- Accessed 10 to 50 million distinct datasets at 10 million increments from delta lake.
- Applied user-defined function (udf) to calculate entropy to 30-sec rolling windows with 1 second shift of the signal for each sleeper & session.

#### ALGORITHM

- For algo design, examined the efficient & brute force implementations of Pandas & Pyspark libraries.
- Evaluated both single & multinode clusters of varying configurations based on total time taken.

#### LIMITATIONS

- Unable to evaluated the Pandas implementation beyond 40 m as it keeps failing at failed at 50m.
- The Pandas did not suffice due to memory & time constraints until the operation was augmented using Pyspark.

# Total number of experiments



# RESULTS



## RESULTS

#### Pandas vs. Pyspark



- Pyspark efficient method has constant time complexity O(1) due to constant total time & function calls irrespective of data size.
- The Pyspark operation generates custom windows based on the criterion defined and applies the Pandas function to data in each individual window.
- It performed complex rolling calculation on 50 million records in less than 0.3 seconds with both single & multinode Databricks clusters.

#### Pandas Total time: Single node & Multi-node clusters





#### Pyspark Total time: Single node & Multi-node clusters

Storage\_optimized (Pyspark-Brute Force)
 Memory\_optimized (Pyspark-Brute Force)
 General\_purpose (Pyspark-Brute Force)
 Compute\_optimized (Pyspark-Brute Force)
 Storage\_optimized (Pyspark-Efficient)
 Memory\_optimized (Pyspark-Efficient)
 General\_purpose (Pyspark-Efficient)
 Compute\_optimized (Pyspark-Efficient)



#### Pandas Function call Count: Single node & Multi-node clusters



- Memory\_optimized (Pandas-Brute Force)
- General purpose (Pandas-Brute Force)
- --- Compute\_optimized (Pandas-Brute Force)
- --- Storage\_optimized (Pandas-Efficient)
- Memory\_optimized (Pandas-Efficient)
- ---- General\_purpose (Pandas-Efficient)
- --- Compute\_optimized (Pandas-Efficient)



# Pyspark Function call Count : Single node & Multi-node clusters



- Memory\_optimized (Pyspark-Brute Force)
- General\_purpose (Pyspark-Brute Force)
- ---- Compute\_optimized (Pyspark-Brute Force)
- —• Storage\_optimized (Pyspark-Efficient)
- --- Memory\_optimized (Pyspark-Efficient)
- General\_purpose (Pyspark-Efficient)
- Compute\_optimized (Pyspark-Efficient)



Single-node evaluation of the Efficient Pandas implementation



Pandas Single-node

Multi-node evaluation of the Efficient Pandas implementation



Pandas Multi-node

Pyspark Single-node

#### Single-node evaluation of Efficient Pyspark implementation



28 🍃

Pyspark Multi-node

#### Multi-node evaluation of Efficient Pyspark implementation



29 🍃







DATA<sup>+</sup>AI SUMMIT

# Clear winner = PYSPARK EFFICIENT METHOD

# Within 0.2 - 0.3 seconds

Total time taken for 10 to 50 million records

# CONCLUSION



## DISCUSSION

#### **Technical insights**

#### TECHNICAL DETAILS

- As Pandas failed to process beyond 40 m datapoints, the results at the same size & varying cluster configuration were juxtaposed to compare the processing speed, execution time & function calls to nominate the best method.
- The efficient Pyspark method had a constant time complexity O(1) & static number of function calls. It executed in mere 0.2 to 0.3 seconds.
- In comparison to the Pandas brute force method with O(n) complexity and approximately 45-minute execution time, the top method was four orders of magnitude times faster.
- Similarly, when compared to the efficient Pandas method with O(log(n)) complexity and approximately 15-minute execution time, the top method was 3 orders of magnitude times faster.
- Finally, the top method was twice to thrice as fast as the Pyspark brute-force method with quasi-O(1) complexity and 0.3 to 0.6 second execution time with single and multi-node clusters, respectively.

## RECOMMENDATIONS

#### Based on Pandas vs. Pyspark comparison

PANDAS

- Ideal for small datasets below 0.5 million datapoints.
- Works well on a single machine.
- Easier to implement with lower learning curve due to simple API & syntax.

#### Disclaimer

Shared analysis applies to entropy calculation. Other algorithms may require different considerations.

#### Use the Databricks platform to leverage the computing capabilities offered by multitude of cluster configurations

#### **PYSPARK**

- Ideal for larger datasets above 0.5 million datapoints.
- Works well with distributed processing across clusters.
- Utilizes python's learnability to leverage the powerful capabilities of Apache Spark.

#### Key takeaway

Gain in performance can be observed for big data algorithms that can be parallelized.

## CONCLUSION

#### Based on 144+ experiments

- The recommended efficient Pyspark method to calculate entropy ensures constant O(1) time complexity.
- The solution is efficient (fast), scalable and consistent as promised.
- The potent synergy of Pyspark Databricks can enable accelerated processing of big data.
- It can perform complex time series rolling window operations using the entropy custom function in less than a second in Databricks.



- Pandas is easy to use & ideal for smaller datasets below 0.5 million
- PySpark is ideal for larger datasets with distributed processing across clusters

# Team roles



| Name                 | Role                              | Responsibilities                                                                                                                     |
|----------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Gary Garcia Molina   | Long-term Research<br>team leader | Vision, guidance & Ideas                                                                                                             |
| Megha Rajam Rao      | Weight research lead              | Algorithm design, in-lab & in-home<br>study design and coordination,<br>data collection, protocols, quality<br>assessment & analysis |
| Dmytro Rizdvanetskyi | Data Architect                    | Peer review & Algorithm design assessment                                                                                            |
| Sai Ashrith Aduwala  | Research contributor              | In-lab data collection, study coordination & data pipeline                                                                           |
| Suprit Bansod        | Research contributor              | Manual annotation for data quality<br>& in-lab data analysis                                                                         |
| Shawn Barr           | Research contributor              | In-lab data analysis & in-home<br>mini-protocol analysis                                                                             |
| Kashish Jain         | Electrical engineer               | Hardware setup & troubleshooting                                                                                                     |
| Dmytro Guzenko       | Reviewer                          | Algorithm Peer review                                                                                                                |



### REFERENCES

- Liu, W., Jiang, Y., & Xu, Y. (2022, April 8). A super fast algorithm for estimating sample entropy. Entropy (Basel, Switzerland). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027109/
- pandas Python Data Analysis Library. (n.d.).
- *PySpark Overview PySpark master documentation*. (n.d.). https://spark.apache.org/docs/latest/api/python/index.html

| THANK<br>YOU |
|--------------|
|              |



Megha Rajam Rao Research Scientist Sleep Number



Gary Garcia Molina Senior Principal Scientist Sleep Number

Powered by





2

# Appendix

🎯 42



#### Best results (20 out of 72 Single node tests) Pyspark-Efficient had superior performance compared to Pandas

| Clus<br>ter_<br>No | Cluster type              | Node   | Runtime  | Node type     | Active | Active<br>cores | Method            | Dataset_in<br>Millions | Function_<br>calls | Primitive_ca<br>lls | CPU_time<br>secs | Overall_<br>time_sec<br>s | Overall_<br>time_min<br>s | Photon_a<br>cceleration |
|--------------------|---------------------------|--------|----------|---------------|--------|-----------------|-------------------|------------------------|--------------------|---------------------|------------------|---------------------------|---------------------------|-------------------------|
| 1                  | SingleN Storage optimized | Single | 14.3 LTS | i4i.8xlarge   | 256    | 32              | Pyspark-Efficient | 20                     | 15996              | 15951               | 0.116            | 0.2                       | 0.00333333                | No                      |
| 1                  | SingleN Storage optimized | Sinale | 14.3 LTS | i4i.8xlarge   | 256    | 32              | Pvspark-Efficient | 30                     | 15996              | 15951               | 0.116            | 0.2                       | 0.00333333                | No                      |
| 1                  | SingleN_Storage_optimized | Single | 14.3 LTS | i4i.8xlarge   | 256    | 32              | Pyspark-Efficient | 50                     | 15996              | 15951               | 0.117            | 0.2                       | 0.00333333                | No                      |
| 1                  | SingleN_Storage_optimized | Single | 14.3 LTS | i4i.8xlarge   | 256    | 32              | Pyspark-Efficient | 40                     | 15996              | 15951               | 0.122            | 0.2                       | 0.00333333                | No                      |
| 2                  | SingleN_Memory_optimized  | Single | 14.3 LTS | 45d.8xlarge   | 256    | 32              | Pyspark-Efficient | 20                     | 15995              | 15950               | 0.135            | 0.2                       | 0.00333333                | No                      |
| 2                  | SingleN_Memory_optimized  | Single | 14.3 LTS | 45d.8xlarge   | 256    | 32              | Pyspark-Efficient | 50                     | 15995              | 15950               | 0.135            | 0.2                       | 0.00333333                | No                      |
| 2                  | SingleN_Memory_optimized  | Single | 14.3 LTS | 45d.8xlarge   | 256    | 32              | Pyspark-Efficient | 30                     | 15995              | 15950               | 0.136            | 0.2                       | 0.00333333                | No                      |
| 2                  | SingleN_Memory_optimized  | Single | 14.3 LTS | 45d.8xlarge   | 256    | 32              | Pyspark-Efficient | 40                     | 15995              | 15950               | 0.143            | 0.2                       | 0.00333333                | No                      |
| 4                  | SingleN_Compute_optimized | Single | 14.3 LTS | c6id.32xlarge | 256    | 128             | Pyspark-Efficient | 50                     | 15995              | 15950               | 0.144            | 0.2                       | 0.00333333                | No                      |
| 4                  | SingleN_Compute_optimized | Single | 14.3 LTS | c6id.32xlarge | 256    | 128             | Pyspark-Efficient | 20                     | 15995              | 15950               | 0.145            | 0.2                       | 0.00333333                | No                      |
| 4                  | SingleN_Compute_optimized | Single | 14.3 LTS | c6id.32xlarge | 256    | 128             | Pyspark-Efficient | 30                     | 15995              | 15950               | 0.147            | 0.2                       | 0.00333333                | No                      |
| 1                  | SingleN_Storage_optimized | Single | 14.3 LTS | i4i.8xlarge   | 256    | 32              | Pyspark-Efficient | 10                     | 16864              | 16819               | 0.154            | 0.2                       | 0.00333333                | No                      |
| 4                  | SingleN_Compute_optimized | Single | 14.3 LTS | c6id.32xlarge | 256    | 128             | Pyspark-Efficient | 40                     | 15995              | 15950               | 0.159            | 0.2                       | 0.00333333                | No                      |
| 2                  | SingleN_Memory_optimized  | Single | 14.3 LTS | 45d.8xlarge   | 256    | 32              | Pyspark-Efficient | 10                     | 16863              | 16818               | 0.168            | 0.2                       | 0.00333333                | No                      |
| 3                  | SingleN_General_purpose   | Single | 14.3 LTS | m6g.16xlarge  | 256    | 64              | Pyspark-Efficient | 30                     | 15995              | 15950               | 0.17             | 0.2                       | 0.00333333                | No                      |
| 3                  | SingleN_General_purpose   | Single | 14.3 LTS | m6g.16xlarge  | 256    | 64              | Pyspark-Efficient | 50                     | 15995              | 15950               | 0.171            | 0.2                       | 0.00333333                | No                      |
| 3                  | SingleN_General_purpose   | Single | 14.3 LTS | m6g.16xlarge  | 256    | 64              | Pyspark-Efficient | 40                     | 15995              | 15950               | 0.179            | 0.3                       | 0.005                     | No                      |
| 3                  | SingleN_General_purpose   | Single | 14.3 LTS | m6g.16xlarge  | 256    | 64              | Pyspark-Efficient | 20                     | 15995              | 15950               | 0.18             | 0.3                       | 0.005                     | No                      |
| 4                  | SingleN_Compute_optimized | Single | 14.3 LTS | c6id.32xlarge | 256    | 128             | Pyspark-Efficient | 10                     | 16863              | 16818               | 0.191            | 0.3                       | 0.005                     | No                      |
| 3                  | SingleN_General_purpose   | Single | 14.3 LTS | m6g.16xlarge  | 256    | 64              | Pyspark-Efficient | 10                     | 16863              | 16818               | 0.254            | 0.3                       | 0.005                     | No                      |

#### Best results (20 out of 72 Multi-node tests) Pyspark-Efficient had superior performance compared to Pandas

| Cluster_<br>No | Cluster_type             | Node     | Runtime  | Active<br>memory_gb | Active<br>cores | Method            | Dataset_in_Mi<br>llions | Function_c<br>alls | Primitive_<br>calls | CPU_time_secs | Overall_time_<br>secs | Overall_ti<br>me_mins | Photon_acc<br>eleration |
|----------------|--------------------------|----------|----------|---------------------|-----------------|-------------------|-------------------------|--------------------|---------------------|---------------|-----------------------|-----------------------|-------------------------|
| 1              | MultiN_Storage_optimized | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 50                      | 15995              | 15950               | 0.132         | 0.2                   | 0.00333333            | No                      |
| 1              | MultiN_Storage_optimized | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 20                      | 15995              | 15950               | 0.133         | 0.2                   | 0.00333333            | No                      |
| 3              | MultiN_General_purpose   | Multiple | 14.3 LTS | 256                 | 64              | Pyspark-Efficient | 50                      | 15995              | 15950               | 0.137         | 0.2                   | 0.00333333            | No                      |
| 2              | MultiN_Memory_optimized  | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 20                      | 15995              | 15950               | 0.141         | 0.2                   | 0.00333333            | No                      |
| 1              | MultiN_Storage_optimized | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 40                      | 15995              | 15950               | 0.143         | 0.2                   | 0.00333333            | No                      |
| 2              | MultiN_Memory_optimized  | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 50                      | 15995              | 15950               | 0.143         | 0.2                   | 0.00333333            | No                      |
| 1              | MultiN_Storage_optimized | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 30                      | 15995              | 15950               | 0.146         | 0.2                   | 0.00333333            | No                      |
| 2              | MultiN_Memory_optimized  | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 30                      | 15995              | 15950               | 0.147         | 0.2                   | 0.00333333            | No                      |
| 3              | MultiN_General_purpose   | Multiple | 14.3 LTS | 256                 | 64              | Pyspark-Efficient | 40                      | 15995              | 15950               | 0.148         | 0.2                   | 0.00333333            | No                      |
| 3              | MultiN_General_purpose   | Multiple | 14.3 LTS | 256                 | 64              | Pyspark-Efficient | 20                      | 15995              | 15950               | 0.149         | 0.2                   | 0.00333333            | No                      |
| 3              | MultiN_General_purpose   | Multiple | 14.3 LTS | 256                 | 64              | Pyspark-Efficient | 30                      | 15995              | 15950               | 0.155         | 0.2                   | 0.00333333            | No                      |
| 2              | MultiN_Memory_optimized  | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 40                      | 15995              | 15950               | 0.169         | 0.2                   | 0.00333333            | No                      |
| 3              | MultiN_General_purpose   | Multiple | 14.3 LTS | 256                 | 64              | Pyspark-Efficient | 10                      | 16863              | 16818               | 0.177         | 0.3                   | 0.005                 | No                      |
| 1              | MultiN_Storage_optimized | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 10                      | 16863              | 16818               | 0.18          | 0.3                   | 0.005                 | No                      |
| 4              | MultiN_Compute_optimized | Multiple | 14.3 LTS | 256                 | 128             | Pyspark-Efficient | 30                      | 15995              | 15950               | 0.183         | 0.3                   | 0.005                 | No                      |
| 4              | MultiN_Compute_optimized | Multiple | 14.3 LTS | 256                 | 128             | Pyspark-Efficient | 50                      | 15995              | 15950               | 0.183         | 0.3                   | 0.005                 | No                      |
| 4              | MultiN_Compute_optimized | Multiple | 14.3 LTS | 256                 | 128             | Pyspark-Efficient | 20                      | 15995              | 15950               | 0.184         | 0.3                   | 0.005                 | No                      |
| 4              | MultiN_Compute_optimized | Multiple | 14.3 LTS | 256                 | 128             | Pyspark-Efficient | 40                      | 15995              | 15950               | 0.187         | 0.3                   | 0.005                 | No                      |
| 2              | MultiN_Memory_optimized  | Multiple | 14.3 LTS | 256                 | 32              | Pyspark-Efficient | 10                      | 16863              | 16818               | 0.197         | 0.3                   | 0.005                 | No                      |
| 4              | MultiN_Compute_optimized | Multiple | 14.3 LTS | 256                 | 128             | Pyspark-Efficient | 10                      | 16863              | 16818               | 0.223         | 0.3                   | 0.005                 | No                      |

#### Pandas computing (CPU) time: Single node & Multi-node clusters





#### Pyspark computing (CPU) time: Single node & Multi-node clusters



- Memory\_optimized (Pyspark-Brute Force)
- --- General purpose (Pyspark-Brute Force)
- Compute\_optimized (Pyspark-Brute Force)
- Storage\_optimized (Pyspark-Efficient)
- Memory\_optimized (Pyspark-Efficient)
- ---- General\_purpose (Pyspark-Efficient)
- Compute\_optimized (Pyspark-Efficient)

