
©2024 Databricks Inc. — All rights reserved

RAPID PYSPARK
IMPLEMENTATION
ON TIME SERIES
BIG DATA

Megha Rajam Rao | Gary Garcia Molina
June 12th , 2024

1

©2024 Databricks Inc. — All rights reserved

Data Science and Machine Learning (Advanced)
Breakout Session

2

Rapid Pyspark custom
processing
on time series Big
data in Databricks

Powered by Powered by

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

Is Big data processing
time consuming?

3

©2024 Databricks Inc. — All rights reserved 4

Scalable

Efficient (Fast)

Consistent

Solution

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 5

Agenda
• Introduction
• Dataset
• Clusters
• Methods
• Results
• Conclusion

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 6

INTRODUCTION

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

BACKGROUND METHOD SOLUTION

7

OVERVIEW

• Goal: To quantify weight changes
and their association with sleep
using Sleep Number Smart beds
equipped with force sensors.

• Problem: Raw readings were noisy
due to user movements
necessitating denoising by cleaning
each rolling window of the big data.

• Methodology: Entropy measure
calculated using Pandas and Pyspark
implementations were utilized to clean
and denoise the dataset.

• Experimentation: Different configurations
of single and multi-node clusters in
Databricks were tested on datasets with
10 to 50 million datapoints for optimal
performance evaluation.

• Result: The recommended
Pyspark method rapidly
processed 50 million records in
nearly 0.3 seconds in Databricks.

• Inference: It performed complex
custom calculation on rolling
windows of time series big data in
constant time complexity
irrespective of data size.

A brief preview

7

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 8

Background

SMARTBED

SENSORS

NOISY
SIGNAL

High entropy

Low entropy

Model

High
quality
data

Entropy => Quantifies randomness, disorder or uncertainty
Time complexity of the entropy-calculation algorithm in literature is O(N^2) (Liu et al., 2022)

Sum of
readings

Suppose subject sleeps on left side

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• The goal was to quantify weight changes & their association
with sleep. However, the sensors under the Smart bed send
overnight force signals which are inherently noisy due to user
movements & position in bed.

• Due to fluctuations in readings on each side of bed, an intricate
quality assessment needed to be performed to select stable
data segments characterized by low entropy.

• For calculating the entropy at a granular level, a custom formula
had to be applied to slices of high-resolution time series big
data at 1 Hz with 10s of millions of records.

• The initial implementation using Pandas did not suffice due to
memory and time constraints.

GENERAL PROBLEM TECHNICAL PROBLEM

9

CHALLENGES
Problem Overview

9

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

TERMINOLOGY

10

• Pandas is a powerful and flexible python library
commonly used for data analysis, manipulation and
machine learning tasks.

• It is open source and built on top of the Python
programming language.

• PySpark is the Python API gateway to Apache Spark
for data processing, analysis and machine learning
tasks.

• It enables real-time large-scale data processing in a
distributed environment using the Python
programming language.

Pandas Pyspark

Overview & General use

10

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
11

DATASET

50, 40, 30, 20 and 10
million datasets
generated from a
combination of
synthetic and actual
datapoints from
12.55 million data rows
originating from
118 overnight sessions
with 8 Testers.

8
testers

118
sessions

12.55 m
data

50m
40m

30m

20m

10m

DATASET

To test scalability &
consistency

DATA CURATION

Initial dataset •Actual
sensor data

Dummy data
with Pseudo

id

•Subject id is transformed by replacing
study id with SDn (for example, - SD1,
SD2, SD3 etc). Here SD stands for
synthetic data.

Transformed
data with new

readings

•A constant value
(multiple of 25 for each
dataset) is added to all
readings

3 synthetic datasets

SD3

SD2
SD1

Larger
study

(10.88 m)

Smaller
study

(1.6 m)

Initial
data

(12.5 m)

5 testers
102 sessions

3 testers
16 sessions

8 testers
118 sessions

3 iterations
(with unique

pseudo ids and
unique

constants)

(1) INITIAL DATA (2) SYNTHETIC DATA

(3) FINAL DATA

Final
data

Initial
data

Syn.
data 1

Syn.
data 2

Syn.
data 3

Merge all
datasets to
multiply the
initial data
by 4 times

50.2 m
550 sessions

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
14

CLUSTERS

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
17

METHODS

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Accessed 10 to 50 million
distinct datasets at 10 million
increments from delta lake.

• Applied user-defined function
(udf) to calculate entropy to
30-sec rolling windows with 1
second shift of the signal for
each sleeper & session.

• For algo design, examined the
efficient & brute force
implementations of Pandas &
Pyspark libraries.

• Evaluated both single & multi-
node clusters of varying
configurations based on total
time taken.

• Unable to evaluated the
Pandas implementation
beyond 40 m as it keeps
failing at failed at 50m.

• The Pandas did not suffice
due to memory & time
constraints until the operation
was augmented using
Pyspark.

DATA & LOGIC ALGORITHM LIMITATIONS

1818

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 19

Total number of
experiments

144 experiments

PANDAS PYSPARK

Dataset 4 5
Methods 2 2
Cluster
configs 8 8

64 + 80

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
20

RESULTS

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

RESULTS
Pandas vs. Pyspark

21

• Pyspark efficient
method has constant
time complexity O(1)
due to constant total
time & function calls
irrespective of data
size.

• The Pyspark operation
generates custom
windows based on the
criterion defined and
applies the Pandas
function to data in each
individual window.

• It performed complex
rolling calculation on 50
million records in less
than 0.3 seconds with
both single & multi-
node Databricks
clusters.

Pandas

Pyspark

Processing time Function calls

Pandas Total time:
Single node & Multi-node clusters

Pyspark Total time:
Single node & Multi-node clusters

Pandas Function call Count:
Single node & Multi-node clusters

Pyspark Function call Count :
Single node & Multi-node clusters

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 2626

CONSISTENCY & SCALABILITY
Single-node evaluation of the Efficient Pandas implementation

Pandas
Single-node

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 2727

CONSISTENCY & SCALABILITY
Multi-node evaluation of the Efficient Pandas implementation

Pandas
Multi-node

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 2828

CONSISTENCY & SCALABILITY
Single-node evaluation of Efficient Pyspark implementation

Pyspark
Single-node

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

CONSISTENCY & SCALABILITY

29

Multi-node evaluation of Efficient Pyspark implementation

29

Pyspark
Multi-node

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 3030

10 million

Solution evaluation

50 million

Using Single-node clusters

Pyspark

Pandas

50 million

10 million

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 3131

10 million

Solution evaluation

50 million

Using Multi-node clusters

Pyspark

Pandas

50 million

10 million

©2024 Databricks Inc. — All rights reserved 32

DEMO

Click on Play > button

©2024 Databricks Inc. — All rights reserved 33

Clear winner =
PYSPARK EFFICIENT

METHOD

Within
0.2 - 0.3 seconds

Total time taken for 10 to 50 million records

34

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
35

CONCLUSION

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

TECHNICAL DETAILS

Technical insights

• As Pandas failed to process beyond 40 m datapoints, the results at the same size & varying cluster configuration
were juxtaposed to compare the processing speed, execution time & function calls to nominate the best method.

• The efficient Pyspark method had a constant time complexity O(1) & static number of function calls. It executed
in mere 0.2 to 0.3 seconds.

• In comparison to the Pandas brute force method with O(n) complexity and approximately 45-minute execution
time, the top method was four orders of magnitude times faster.

• Similarly, when compared to the efficient Pandas method with O(log(n)) complexity and approximately 15-minute
execution time, the top method was 3 orders of magnitude times faster.

• Finally, the top method was twice to thrice as fast as the Pyspark brute-force method with quasi-O(1) complexity
and 0.3 to 0.6 second execution time with single and multi-node clusters, respectively.

DISCUSSION

3636

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

PANDAS

• Ideal for small datasets below 0.5
million datapoints.

• Works well on a single machine.

• Easier to implement with lower
learning curve due to simple API
& syntax.

PYSPARK

• Ideal for larger datasets above 0.5
million datapoints.

• Works well with distributed
processing across clusters.

• Utilizes python’s learnability to
leverage the powerful capabilities
of Apache Spark.

RECOMMENDATIONS

37

Based on Pandas vs. Pyspark comparison

37

Disclaimer
Shared analysis applies to entropy calculation. Other

algorithms may require different considerations.

Key takeaway
Gain in performance can be observed for big data

algorithms that can be parallelized.

Use the Databricks platform to
leverage the computing

capabilities offered by multitude
of cluster configurations

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• The recommended efficient Pyspark
method to calculate entropy ensures
constant O(1) time complexity.

• The solution is efficient (fast), scalable
and consistent as promised.

• The potent synergy of Pyspark
Databricks can enable accelerated
processing of big data.

• It can perform complex time series
rolling window operations using the
entropy custom function in less than a
second in Databricks.

38

CONCLUSION
Based on 144+ experiments

38

• Pandas is easy to use & ideal for smaller
datasets below 0.5 million

• PySpark is ideal for larger datasets with
distributed processing across clusters

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 39

Team
roles

Name Role Responsibilities

Gary Garcia Molina Long-term Research
team leader

Vision, guidance & Ideas

Megha Rajam Rao Weight research lead Algorithm design, in-lab & in-home
study design and coordination,
data collection, protocols, quality
assessment & analysis

Dmytro Rizdvanetskyi Data Architect Peer review & Algorithm design
assessment

Sai Ashrith Aduwala Research contributor In-lab data collection, study
coordination & data pipeline

Suprit Bansod Research contributor Manual annotation for data quality
& in-lab data analysis

Shawn Barr Research contributor In-lab data analysis & in-home
mini-protocol analysis

Kashish Jain Electrical engineer Hardware setup & troubleshooting

Dmytro Guzenko Reviewer Algorithm Peer review

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved

• Liu, W., Jiang, Y., & Xu, Y. (2022, April 8). A super fast algorithm for estimating sample
entropy. Entropy (Basel, Switzerland).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027109/

• pandas - Python Data Analysis Library. (n.d.). https://pandas.pydata.org/

• PySpark Overview — PySpark master documentation. (n.d.).
https://spark.apache.org/docs/latest/api/python/index.html

REFERENCES

4040

https://pandas.pydata.org/

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved
41

THANK
YOU

Gary Garcia Molina
Senior Principal Scientist
Sleep Number

Megha Rajam Rao
Research Scientist
Sleep Number

Powered by

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 42

Appendix

Best results (20 out of 72 Single node tests)
Pyspark-Efficient had superior performance compared to Pandas

Clus
ter_
No Cluster_type Node Runtime Node_type

Active
memory_gb

Active
cores Method

Dataset_in
_Millions

Function_
calls

Primitive_ca
lls

CPU_time
_secs

Overall_
time_sec

s

Overall_
time_min

s

Photon_a
ccelerat

ion
1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 20 15996 15951 0.116 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 30 15996 15951 0.116 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 50 15996 15951 0.117 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 40 15996 15951 0.122 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 20 15995 15950 0.135 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 50 15995 15950 0.135 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 30 15995 15950 0.136 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 40 15995 15950 0.143 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 50 15995 15950 0.144 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 20 15995 15950 0.145 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 30 15995 15950 0.147 0.2 0.00333333 No

1 SingleN_Storage_optimized Single 14.3 LTS i4i.8xlarge 256 32 Pyspark-Efficient 10 16864 16819 0.154 0.2 0.00333333 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 40 15995 15950 0.159 0.2 0.00333333 No

2 SingleN_Memory_optimized Single 14.3 LTS 45d.8xlarge 256 32 Pyspark-Efficient 10 16863 16818 0.168 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 30 15995 15950 0.17 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 50 15995 15950 0.171 0.2 0.00333333 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 40 15995 15950 0.179 0.3 0.005 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 20 15995 15950 0.18 0.3 0.005 No

4 SingleN_Compute_optimized Single 14.3 LTS c6id.32xlarge 256 128 Pyspark-Efficient 10 16863 16818 0.191 0.3 0.005 No

3 SingleN_General_purpose Single 14.3 LTS m6g.16xlarge 256 64 Pyspark-Efficient 10 16863 16818 0.254 0.3 0.005 No

Best results (20 out of 72 Multi-node tests)
Pyspark-Efficient had superior performance compared to Pandas

Cluster_
No Cluster_type Node Runtime

Active
memory_gb

Active
cores Method

Dataset_in_Mi
llions

Function_c
alls

Primitive_
calls CPU_time_secs

Overall_time_
secs

Overall_ti
me_mins

Photon_acc
eleration

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 50 15995 15950 0.132 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 20 15995 15950 0.133 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 50 15995 15950 0.137 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 20 15995 15950 0.141 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 40 15995 15950 0.143 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 50 15995 15950 0.143 0.2 0.00333333 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 30 15995 15950 0.146 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 30 15995 15950 0.147 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 40 15995 15950 0.148 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 20 15995 15950 0.149 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 30 15995 15950 0.155 0.2 0.00333333 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 40 15995 15950 0.169 0.2 0.00333333 No
3 MultiN_General_purpose Multiple 14.3 LTS 256 64 Pyspark-Efficient 10 16863 16818 0.177 0.3 0.005 No

1 MultiN_Storage_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 10 16863 16818 0.18 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 30 15995 15950 0.183 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 50 15995 15950 0.183 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 20 15995 15950 0.184 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 40 15995 15950 0.187 0.3 0.005 No

2 MultiN_Memory_optimized Multiple 14.3 LTS 256 32 Pyspark-Efficient 10 16863 16818 0.197 0.3 0.005 No

4 MultiN_Compute_optimized Multiple 14.3 LTS 256 128 Pyspark-Efficient 10 16863 16818 0.223 0.3 0.005 No

Pandas computing (CPU) time:
Single node & Multi-node clusters

Pyspark computing (CPU) time:
Single node & Multi-node clusters

	RAPID PYSPARK�IMPLEMENTATION ON TIME SERIES BIG DATA
	Rapid Pyspark custom processing on time series Big data in Databricks
	Is Big data processing time consuming?
	Slide Number 4
	Agenda
	INTRODUCTION
	OVERVIEW
	Background
	CHALLENGES
	TERMINOLOGY
	DATASET
	Slide Number 12
	Slide Number 13
	CLUSTERS
	Slide Number 15
	METHODS
	Slide Number 18
	Total number of experiments
	RESULTS
	RESULTS
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	CONSISTENCY & SCALABILITY
	Solution evaluation
	Solution evaluation
	Slide Number 32
	Clear winner = PYSPARK EFFICIENT METHOD
	Within�0.2 - 0.3 seconds
	CONCLUSION
	DISCUSSION
	RECOMMENDATIONS
	CONCLUSION
	Team roles
	REFERENCES
	THANK�YOU
	Appendix
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46

